Imaging and radiation effects of gold nanoparticles in tumour cells
نویسندگان
چکیده
Gold nanoparticle radiosensitization represents a novel technique in enhancement of ionising radiation dose and its effect on biological systems. Variation between theoretical predictions and experimental measurement is significant enough that the mechanism leading to an increase in cell killing and DNA damage is still not clear. We present the first experimental results that take into account both the measured biodistribution of gold nanoparticles at the cellular level and the range of the product electrons responsible for energy deposition. Combining synchrotron-generated monoenergetic X-rays, intracellular gold particle imaging and DNA damage assays, has enabled a DNA damage model to be generated that includes the production of intermediate electrons. We can therefore show for the first time good agreement between the prediction of biological outcomes from both the Local Effect Model and a DNA damage model with experimentally observed cell killing and DNA damage induction via the combination of X-rays and GNPs. However, the requirement of two distinct models as indicated by this mechanistic study, one for short-term DNA damage and another for cell survival, indicates that, at least for nanoparticle enhancement, it is not safe to equate the lethal lesions invoked in the local effect model with DNA damage events.
منابع مشابه
Destructive effects of therapeutic ultrasound and gold nanoparticles on a breast carcinoma tumor model in BALB/c mice
Background: Acoustic cavitation which occurs at high intensities of ultrasound waves can be fatal for tumor cells; however, it can be used to destroy cancer cells as an efficient therapeutic method. On the other hand, it is known that the existence of nanoparticles in a liquid decreases the acoustic cavitation onset threshold. Materials and Methods: In this work, the combined effects of therape...
متن کاملEvaluation of multifunctional targeted gold nanoparticles on X-ray attenuation in nasopharyngeal cancer cells by X- ray imaging
Introduction: Head-and-neck cancer is the sixth most common cancer worldwide with the number of cases consistently increasing in developing countries. Successful development of effective, safe and cost effective nanoprobes for head-and-neck cancer targeting imaging is a big challenge. This study is aimed to develop cysteamine-folate conjugated gold nanoparticles (F-Cys-AuNPs) a...
متن کاملGold nanoparticles in radiation therapy: an old story yet mesmerizing
Radiotherapy (RT) is generally considered to be one of the most effective cancer treatments. The primary goal of RT is to accurately induce radiation damage to the tumor while limiting radiation toxicity to a level acceptable to normal tissue. This is accomplished by targeting the tumor with radiation. On the other hand, the status of RT procedures as they stand today is not substantial enough ...
متن کاملThe effect of gold nanoparticles on dose enhancement factor of human intestinal colon cancer HT-29 cells
Introduction: Radiation therapy is an important procedure for treatment of more than half of tumors. One way to increase the efficiency of radiation therapy is application of radiosensitizer at the site of tumor. gold nanoparticles (GNPs) have several characteristics that make them attractive for using with radiation therapy including small size (1–100 nm), biocompatibility, pr...
متن کاملInvestigating the synergistic effects of gold nanoparticles and electroporation in sensitization of human intestinal colon cancer HT-29 cells to 6MV photon beam
Introduction: Radiation therapy (RT) is the gold standard treatment for more than half of known tumors. There is increasing evidence that combining radiation therapy with a radiosensitizer can enhance the efficiency of this treatment modality. A radiosensitizer preferably enhances dose at the site of tumor and increases discrimination between tumor and normal surrounding tissue...
متن کاملDetermination of the absorbent dose increase factor for different concentrations of gold nanoparticles using a dosimetry gel
with the advancement of nanotechnology, high-atomic materials such as gold nanoparticles can be used to increase the amount of absorbed doses and use this property to eliminate cancer cells. In this study, the dose enhancement factor (DEF) derived from different concentrations of gold nanoparticles was calculated to show an increase in absorbed dose from gold nanoparticles. At first, a tissue e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016